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THE NATURE OF RUNNING PENUMBRAL WAVES

ALANH.NYE* and JOHN HL THOMAS**
Max-Planck-Institut fiir Physik und Astrophysik, Munich, Germany

(Received 22 March; revised 25 June, 1974)

Abstract. A model of a sunspot penumbra, including the effects of magnetic field, compressibility, and
buoyancy, is studied in order to identify the mode of running penumbral waves. It is found that the
penumbral waves may be identified with gravity-modified magneto-acoustic waves of the *plus’ type
that are vertically trapped at photospheric levels. Although most of the wave energy is contained in
the penumbral photosphere and subphotosphere, the maximum vertical velocity occurs in the chro-
mosphere where (i) the waves are evanescent and (ii) the vertical velocity is in fact observed (in Hn).

1. Introduction

Recent observations have disclosed an interesting pattern of velocity fields in sun-
spots. The most recent discovery is that of waves propagating radially outward in
sunspot penumbrae (Zirin and Stein, 1972; Giovanelli, 1972). Zirin and Stein refer to
these waves as running penumbral waves. With the further observations of Giovanelli
(1974), we now have a fairly clear picture of the properties of these waves. The purpose
of this theoretical paper is to study possible wave modes in a model of a sunspot
penumbra in order to identify the mode of the running penumbral waves. We shall
argue that the running penumbral waves are gravity-modified magneto-acoustic
waves (of the ‘plus’ type) that are vertically trapped at photospheric levels.

Giovanelli (1974) has summarized the observations of running penumbral waves,
and he presents the following picture. The waves are observed in Hz by means of
their line-of-sight velocity. They occur in almost every sizable spot with a regular
stable structure, but only rarely in active spots with complex structure. The waves
travel outward in the penumbra at a typical speed of 15 km s™'. The observed waves
have periods in the range 180-240 s and horizontal wavelengths in the range 2350-
3800 km. Observations near the limb have failed to reveal any horizontal motions
associated with the penumbral waves, so the wave motion is predominantly vertical
in Ha.

Thus far no detailed theoretical study of the mode of the running penumbral waves
has appeared, although Moore (1973) has studied the related problem of the genera-
tion of penumbral waves in the umbra. Zirin and Stein (1972) tentatively identified
the penumbral waves as sound waves, whereas Giovanelli (1972, 1974) identified them
as Alfvén waves. The penumbral waves, with their predominant vertical motions, no
doubt involve the combined effects of restoring forces due to compressibility, magnetic
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** On leave of absence from the Dept. of Mechanical and Aerospace Sciences and the C. E. Kenneth
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400 ALAN H.NYE AND JOHN H. THOMAS

field, and buoyancy, and a complete theory should account for all three effects. This
1s done in the present paper.

In studying penumbral waves, we face a difficulty, in that there seems to be no
complete, generally accepted penumbral model on which to base our calculations.
We have therefore constructed a penumbral model for use in studying wave modes.
This model (presented in Section 3), while simple enough to permit analysis of wave
modes, nevertheless reproduces all of the relevant features of penumbral structure,
and is in reasonable quantitative agreement with observations. We have assumed the
penumbral magnetic hield to be purely horizontal, but varying with height. True pe-
numbral magnetic fields are not purely horizontal, although they may be very nearly
so (Nishi and Makita, 1973). There is some disagreement over the inclination of the
magnetic field in a penumbra (see Beckers and Schréter (1969) for a summary of
observations). The assumption of a horizontal field here is mostly a matter of con-
venience; the basic mechanism we propose for the vertical trapping of penumbral
waves will also work for an inclined field. We have also taken our model to be horizon-
tally uniform - that is, we have not tried to represent the horizontal filamentary
structure of a penumbra or the radial geometry.

In Section 2 we present the basic equations for waves in our model penumbral
atmosphere. The basic atmosphere is completely characterized in these equations by
the vertical distribution of three parameters: the sound speed ¢, the Alfvén velocity
U4, and the local density scale height H. In order to illustrate the properties of the
various wave modes that can occur, we study the dispersion relation that holds in the
case of constant ¢, v,, and H. In Section 3 we present the basic penumbral model in
terms of the distributions of ¢, va, and H with height. In Section 4 we show that the
penumbral waves may be identified with *plus’ modes that are trapped in the photo-
spheric-subphotospheric region in our model. We discuss these modes further in
Section S.

2. Basic Equations and Dispersion Relations

In our simplified treatment of a sunspot penumbra we shall ignore the radial spreading
of magnetic field lines, and consider the undisturbed magnetic field to be purely
horizontal (in the x-direction) and varying with height z; i.e., By=(B,(z).0,0).
We assume the field permeates an inviscid, perfectly conducting, plane stratified
atmosphere with constant acceleration of gravity g (=0.274 km s~ 2) in the negative
z-direction. The undisturbed pressure, density, and temperature are denoted by
Po(2), 00(2), and T, (z), respectively. The atmosphere is in hydrostatic equilibrium,

so that
1 2 = (M
i Po 8 009 -

We then consider small adiabatic perturbations of this equilibrium atmosphere.
We consider wave vectors only in the xz plane, and assume that the perturbation
velocity u= (u, v, w) has the form u=aexp/ (k. x—wt), with d=d(z)= (i(z), £(z),
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W(z)). Starting with the linearized equations of continuity, energy, and momentum,
we can eliminate the pressure and density perturbations, and arrive at the set of three
linearized momentum equations for the velocity components «, &, and w, in which the
basic atmosphere is completely described by the sound speed ¢(z), the Alfvén velocity
va(2), and the local density scale height H (z), defined by

> 2 3
o2 =<"Po>’ 2 B; | i 1 (1_)(,' @)

Coo i 4mg,’ H Qo 0z

The linearized momentum equations are the following:

d ‘
(w? = c*k2) i + ik c? “. — ik gw =0, (3)

dz
(w® —v3k3) D=0, (4)

2+ ui]d.:-

+ (w* — vpk2) W +
H dz ( ak)

d*w [d
(c* + 1) P [dz (¢ +03) -
de? (2 , da

We can eliminate the horizontal velocity components # and # from the system of
Equations (3)-(5) to obtain a single equation for the vertical velocity w, in the form

diH dw
,+A(z) —+B(z)w=0, 6
Fr il it ©)
where
1 w* de? do}
A(D)=- -+ —— = — + (w? — %3 2
() H l:(w2 —c*k?) dz el dz 3
x [ (0 = ¢’3) + 0] @)
and

B(z) = [(w2 - vﬁkﬁ) (w? = k) —g (g = (H) k2 ~

o’k?  de? iy
—g x (d;—zv —Vic;zlr(?) dz][bi (w2 — ('Zkf) + ('Zwl] L3 (8)

With the transformation

s@)=i@ew i [ 4] ©)

(1]

Equation (6) assumes the form

d? .

dj:+_/ (keww; 2) =0, (10
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where
.
f=B-3A -} . (h)

Here, |$|* is roughly proportional to the kinetic energy of wave motion. Equation
(10) is the propagation equation for waves in an atmosphere with vertically varying
%, vx,and H. For given distributions of ¢ (z), va (z), and H (z), we can use the expres-
sion for f (z) (Equation (11)) to distinguish roughly between local regions where a
wave with a particular frequency @ and horizontal wavelength &, is vertically propa-
gating (/' >0) or vertically evanescent ( /' <0). We shall use this approach for our
penumbral model in Section 4.

The simplest case to study is that of constant ¢2, vz, and H. We shall consider this
case now in order to show the kinds of wave modes which can occur. Although this
case does not apply strictly to a real penumbra, or in fact to our penumbral model, we
can nevertheless apply the resulting dispersion relation locally to get an approximate
picture of the wave modes. We can also approximate a continuous vertical variation
of the parameters in the penumbra by a series of layers in which they are constant. In
the case of constant ¢?, vx, and H, Equations (3)-(5) have constant coefficients, and
we can assume a solution of the form ii(z)=u exp (ik.z+2z/2H ), where 1= (4, T. W) is
a constant vector. Here, the factor exp(z/2H ) accounts for the fact that, to conserve
energy, the perturbation amplitude must grow as the density decreases. The system of
Equations (3)-(5) then becomes (cf., Yu, 1965):

2
(0® — k) + ik, [ik:cz ~ (g = 231)] w=0, (12)

(w® —v3k?) =0, (13)
2
ik, l:il\‘,c2 + (g - 2(H>:| i+ l:(w2 — v2k?) — (¢ + v3) x

1
X (I\f +4H2>:| w=0. (14)

The dispersion relation for waves is obtained from the condition for nonzero solu-
tions of the homogeneous system (12)-(14), i.e., the vanishing of the determinant of
the coefficients. This yields the dispersion relation

1
(0 k) fo = o ) (2 42+ AL

1 2
+ c?olk? <kf + k? +4H2)—g<y —‘H)ki}=0~ (13)

We now discuss the various wave modes given by this dispersion relation, with some
comments on their relation to running penumbral waves.
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2.1. THE PURE ACOUSTIC MODE

The dispersion relation (15) is satisfied with w?=¢?k? for the particular imaginary
value of &, given by ik, =(1/2H)— (g/c*). From Equations (12)-(14) we see the cor-
responding motion has 7#0, whereas t=1w=0. This mode is thus a purely compres-
stonal, acoustic mode with dispersion relation identical to that of a homogeneous
isothermal gas. This can occur since the motion is horizontal and parallel to the
magnetic field, and thus there is no contribution from buoyant or magnetic forces.
The amplitude behaves as

5 I g
u = uexp R Z s
\ ('

and thus grows exponentially with height (since H < ¢?/g for stability of the unpertur-
bed atmosphere (Yu, 1965)). The total momentum and energy are finite, however,
provided there is a lower bound.ry confining the motion to a semi-infinite range of .
This mode is identical to the Lamb mode in the non-magnetic case, except that here
the scale height #/ is modified by the magnetic field. Since this mode has no vertical
motion, it can nct be associated with the running penumbral waves.

2.2. THE PURE ALFVEN MODE

A root of the dispersion relation (15), for arbitrary k_, is given by w?=uv2kZ2, which is
the same as the dispersion relation for a pure Alfvén wave in a homogeneous atmos-
phere with uniform magnetic field. With w? =v2k?, however, the other factor in the
dispersion relation (15) is in general not zero, and thus Equations (12)-(14) show that
the motion has ¢ #0, whereas &= =0. The motion is purely horizontal and purely
transverse to the magnetic field. Thus, the pure Alfvén mode in a stratified atmosphere
is, SO to speak, plane polarized, with no vertical motions. With #w=0 there is no con-
tribution from the buoyancy force, and, further, with #=0 the motion is incompres-
sible, so the wave behaves as a pure Alfvén wave (with the amplitude factor
exp(z/2H)). Again, since this mode has no vertical motions, it can not be associated
with the running penumbral waves. We turn now to the remaining roots of the dis-
persion relation (15). which do permit vertical motions.

2.3. THE PLUS AND MINUS MODES

The remaining roots of the dispersion relation (15) are given by
0l =1 {(* +1‘2)/k1+/\'2+ : + | (¢* + vd)? (/\'2+/\2+ ] 2—
E A \ X z 4H2 - A x z 4[12

1 ('2 1/2
— dcluik? (kf + k2 +4H2>+4g (g— H)kf] } (45)

We shall refer to these two modes as the ‘plus’ and ‘minus’ modes. These modes
involve the interaction of all three restoring forces: buoyant, pressure, and magnetic.
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They reduce to more familiar wave modes in certain limiting cases. For example, in
the limit of vanishing magnetic field (v, — 0) they reduce to the acoustic and gravity
modes of an isothermal atmosphere (see, for example, Thomas et al.. 1971). Alter-
natively, in the limit of no stratification (# — =, g —0), they reduce to the fast and
slow magnetoacoustic waves in a homogeneous atmosphere (see, for example, Oster-
brock, 196!). For intermediate cases (such as for penumbral conditions). we can look
at the modes as being either magnetically modified acoustic-gravity waves or gravity-
modified magnetoacoustic waves. We shall continue to use the terms plus and minus
modes here.

The plus and minus modes, for k. =0, are shown schematically in a diagnostic
diagram in Figure i. The asymptotic behavior of the dispersion relation (16) for
k.=0 is such that

2
wl —>(4;;5, w: -0 for k,—0, (17)

and

2 5 2 .
w2 - k2max(c?, v;), > - i min(c? vy) for k,— . (18)

] 7

2 2 2 2
W= kg max (c*,vE) -

K

2 2
c*ev,

2H

Fig. 1. Schematic diagnostic diagram of the plus and minus modes, showing curves for k. -0

(solid lines). The plus mode has a finite cutoff frequency as k, —0. For k,— =, the plus and minus

modes approach the dispersion lines for the pure acoustic and pure Alfvén modes. For strong stratifi-

cation and weak magnetic field, the minus mode approaches the line @ = k vy from above rather
than bele w.
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In the diagnostic diagram (Figure 1), there are vertically-propagating waves (k2>0)
above the w, curve and below the w_ curve, and evanescent waves (k2<0) in the
region between the two curves.

The plus mode has a finite cutoff frequency of (w, ). = (¢ +vi)'/?/2H as k,—0.
Estimates of this cutoft frequency at photospheric levels in a penumbra give values
just a little lower than the frequencies of penumbral waves. This suggests that the
penumbral waves might be identified with plus modes. We shall show this in more
detail through the use of our penumbral model.

3. The Penumbral Model

We now present the penumbral model to be used in our wave calculations. For our
purposes, a penumbral model consists of specified distributions of ¢, v2, and H with
height z. To simplify the calculations, we have chosen to represent the expected verti-
cal variation of these parameters by piecewise linear functions. The specified forms
of ¢(z), v7 (z), and H (z) are shown in Figure 2. The important features of the model
are as follows. The sound speed increases with depth into the convection zone from
a broad minimum in the penumbral photosphere and chromosphere. The Alfvén
velocity increases rapidly with height due to the nearly exponential decrease of
density while the magnetic field decreases nearly linearly. The density scale height
increases on either side of a minimum in the penumbral photosphere and low chromo-
sphere. The model thus reproduces the main expected features of vertical penumbral
structure. The numerical values of the parameters were chosen to represent a typical
penumbra.

The distribution of the sound speed was determined primarily from the expected
temperature distribution. Kjeldseth Moe and Maltby (1969) report that the tempera-
ture 7 in tc penumbra may be obtained by adding a constant 40=0.055 to the 0
values of the quiet photosphere, where 0 = 5040/7. With this 40, the calculated relative
intensities averaged over the penumbral fine structure agreed well with observations.
Kjeldseth Moe and Maltby used the Bilderberg Continuum Atmosphere (Gingerich
and de Jager, 1968) for their quiet photospheric temperatures; here, we use the more
recent Harvard-Smithsonian Reference Atmosphere (HSRA, Gingerich et al., 1971).
Using the constant 40=0.055, the penumbral temperature minimum is found to be
3989 K, yielding a minimum value of the sound speed squared of ¢*=43.5 km? s~ 2.
The slope of the linear increase of ¢? into the convection zone was taken to be 0.1
km s~ 2; this choice is also based on the behavior of the HSRA. The distribution of
sound speed (in km s™') is given by

5-0. <2
cz(z)={635 0.1z z<200

43.5 2> 200, 5

At some point in the penumbral chromosphere the sound speed will increase rapidly
to coronal values. However, this increase takes place above the region where the
penumbral waves are trapped in our model, so we have not included this in the model.
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Fig. 2. Distribution of ¢2, ra2, and H with height z in the penumbral model (solid lines). The data
(crosses) for vy? are based on penumbral observations (see text). Data points for quiet photospheric
values of ¢? and H, based on the HSRA, are shown only for comparison with the penumbral model.

The distribution of ¢? is shown in Figure 2, along with quiet atmospheric values of ¢?
from the HSRA (Nakagawa, 1973) for comparison.

To determine the Alfvén velocity, we assumed that the magnetic field strength
decreases linearly with height and is 1000 G at z=0. The rate of decrease of field
strength with height was taken to be 0.2 G km ™', in accordance with observations (see
Bray and Loughhead, 1964). The photospheric densities were estimated from the
penumbral model of Makita (1963), the only penumbral model to give densities. His
densities are consistent with more recent quiet photospheric models. The resulting
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values of v; are plotted in Figure 2. The vertical distribution of these points was
approximated in our model by two straight-line segments, with the upper segment
extrapolated to greater heights. In the convection zone, the Alfvén velocity was
approximated by another straight line segment which goes to zero at z= —500 km,
due primarily to the increase in density with depth, but also to the fact that the penum-
bral field probably lies over the convection zone. The resulting distribution of the
Alfvén velocity (in km s™') is given by

. 0 Z<“5(x)
ey |25 40052 -500<z<0
val®) =55 4 0.1722 0 < z < 400 )

94 +0.75 (z — 400)  z > 400.

The distribution of the local density scale height H (in km) with height was chosen
to be
230 — 0.375z z <200
H(z) =155 200 < z < 400 20
155 + 0.55 (z — 400) z>400.

In choosing values for H, we were guided by the following expression for the vertical
entropy gradient in the atmosphere:

ds  oc.k - vi\ 1 d (v}
= g = : (22
dz = pT [(C 2)11 974z 2) )

where ¢, is the specific heat at constant volume, x is the isothermal compressibility,
and f is the coefficient of thermal expansion. This relation follows from the hydro-
static equation (1) and the basic thermodynamic relation

KC,

Tds= ‘(dp—c*do). (23)

p
The distribution of H given in (21) is such that the entropy gradient ds/dz is negative in
the upper convection zone and positive in the penumbral photosphere and chromo-
sphere. The distribution of H is shown in Figure 2, along with quiet atmospheric
values of H from the HSRA (Nakagawa, 1973) for comparison. Here we can see the
effect of the supporting magnetic field; the scale height is greater in the penumbra
than in the quiet atmosphere. The effect of the magnetic field increases as the density
decreases.

4. Trapping of Plus Modes in the Penumbral Photosphere

We now show that the running penumbral waves can be identified in our model with
plus modes that are vertically trapped at photospheric levels. The basic mechanism for
the trapping is the refraction due to (i) the increasing Alfvén velocity with increasing
height in the photosphere-low chromosphere, and (i) the increasing sound speed with
depth in the convection zone. We shall demonstrate the trapping mechanism in two
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ways: first, by considering the local dispersion relation (16) at three distinct levels in
the model penumbra (assuming locally constant parameters), and second, by con-
sidering the propagation equation (10) for the complete continuous penumbral
model (Figure 2).

4.1. THREE-LEVEL MODEL

A convenient method of looking at wave modes in our model is to draw diagnostic
diagrams such as Figure | for various heights in the atmosphere, assuming locally
constant values of 2, v, and H - that is, ignoring the derivatives of these parameters
in Equation (3)-(5). Although only approximate, this method does give some feeling
for the behavior of the wave modes. We shall draw diagnostic diagrams for three
different levels in our model penumbra; one in the convection zone, one in the
photosphere, and one in the chromosphere. We may interpret these diagnostic
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Fig. 3. Superimposed diagnostic diagrams for values of ¢?, v42, and H at three different levels in

the model penumbra: level, 1 z = — 1400 km; level 2, z — — 50 km; level 3, - = SO0 km. The shaded

region is a region of vertical trapping of plus modes around level 2. The crosses correspond to
observed running penumbral waves (Giovanelli, 1974).
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diagrams more properly as representing a three-layer model of the penumbra, where
in each layer the parameters are constant. A middle layer of finite thickness represent-
ing the penumbral photosphere is bounded above and below by semi-infinite layers
representing the penumbral chromosphere and convection zone, respectively.

Figure 3 shows diagnostic diagrams for values of ¢?, 2, and H at three different
levels in the penumbral model: z= — 1400 km (layer 1. convection zone). z= — 50 km
(layer 2, penumbral photosphere), and z =500 km (layer 3, penumbral chromosphere).
The important feature of this figure is the existence of the shaded region in which the
plus modes are vertically propagating in layer 2, but are vertically evanescent in
layers | and 3. These modes are thus trapped in layer 2. The plus mode diagnostic
curve for layer 3 lies above that of layer 2 because of the higher Alfvén velocity in
layer 3. For higher levels in the chromosphere, the plus mode curve for layer 3 will be
higher than that shown. The plus mode diagnostic curve for layer | has a lower cutoff
frequency than layer 2 due to the larger scale height in the convection zone, but lies
above the curve for layer 2 for higher values of k because of the higher value of ¢? in
layer 1. For deeper levels in the convection zone, the plus mode curve for layer | will
have an even lower cutoff frequency and a steeper slope. The existence of the region of
trapping in the diagnostic diagram is a consequence of the qualitative features of our
model and is not dependent on the particular choice of numerical values.

There is no trapping of minus modes in Figure 3. All the minus modes propagating
in layer 2 are also propagating in layer 3. The minus mode curve for layer | has
vanished since the Alfvén velocity is zero and the atmosphere is convectively unstable
at that level.

Also shown in Figure 3 are four data points corresponding to penumbral waves
observed in different sunspots by Giovanelli (1974) for which he gives specific wave-
length and periods. These points tend to cluster in the long-wavelength end of the
shaded region of trapping of the plus modes. The one point which lies outside the
shaded region does lie in the region of trapping if the parameter values in layer | are
chosen to represent a lower level in the convection zone. That is, a wave of this fre-
quency and wavelength is reflected at a lower level in the convection zone in our
model. This data point is considered atypical by Giovanelli, however. The observation-
al data correspond to different sunspots, no doubt having different field strengths,
whereas the diagnostic curves are for a single choice of the model parameters. Never-
theless, the resulting picture in Figure 3 clearly shows that the running penumbral
waves should be identified with plus modes which are vertically trapped at photo-
spheric levels in our model.

4.2. CONTINUOUS MODEL

We now illustrate more accurately the trapping of the penumbral waves by making use
of our complete penumbral model (Figure 2) in conjunction with the propagation
equation (10). Roughly speaking, a wave is vertically propagating when the function
f (ky, w; z) (Equation (11)) is positive, and is vertically evanescent when f'is negative.
In Figure 4 we have plotted f'as a function of z for our penumbral model (Figure 2) for
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Fig. 4. The function f (k,, ®; =) evaluated for the penumbral model (Figure 2) with &,
km~!' =3 x10"%s" "

a typical value of horizontal wavenumber (k,=2x10"*km™!) and frequency
(w=3x10"2s7") for penumbral waves. The function f (z) is discontinuous due to
the discontinuities in the first derivatives of the parameters ¢, vz, and H in our model.
The general behavior of f is that it is positive in a central region extending from
z~ — 1000 km to roughly zx~ 300 km, and negative above and below this region.

In the lowest order WK B approximation, the general solution to (10) is given by

= exb [Ii}\/fdz]. (24)
0

If f'is positive for 0 <z <z, and negative for z> z,, then the solution for z>z, which is
bounded as z— oo can be written as

Jfdz = f\/ —fdz]. (25)

u

¢ (2) =exp[i i

(=]

Thus, for z>z,, the solution has the form of an exponential decay (with variable
exponential factor), and the wave may be characterized as evanescent in the vertical
direction. This analysis is somewhat crude, however, since the WKB solution (24) is
not accurate in the neighborhood of z,. The same analysis applies to the case where /°
is positive for —z; <z<0 and negative for z< —z,. The wave then becomes evanes-
cent as z decreases below —z;. Applying this to Figure 4, we conclude that a wave
with the specified horizontal wavelength and frequency is trapped roughly in the
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central reg.on — 1000 <z <300 where /" is positive. The exact location of the upper
boundary of the trapping region is somewhat unclear due to the complicated dis-
continuous behavior of f there. This is due to the piecewise linear nature of our model;
with smoother distributions of ¢, vi, and H, the function / would have a single,
smooth zero crossing at some z>0.

We have been discussing the behavior of the function ¢ (z). Comparison with the
case of constant parameters shows that |¢|* is roughly proportional to the kinetic
energy of vertical motion of the wave (¢ ~./¢ w). Thus, it is the kinetic energy that is
trapped in the region of positive f. The amplitude of the vertical velocity behaves
somewhat differently. From Equations (9) and (25) we have, for z>z,

20

W(2) = exp[iif\//fdz+Q(z)]. (26)
where ;
Q(z) -4 |Adz— |/~ rdz. (27)
fan

The function A4 (z) (Equation (7)) is negative over a range in z, and the function Q(z)
will remain positive over a range of z beyond z, before becoming negative. Thus, the
vertical velocity continues to increase above z, before reaching a maximum at z=z,,
where z, is determined from the relation Q(z,)=0. This can occur in spite of the
decreasing energy above z=z, due to the rapid decrease in density.

By numerically evaluating the integrals in (27), we have estimated the point z; of
maximum vertical velocity in our model, again for the choice k,=2x 1073 km~! and
@=3x10"%s71, The resulting value is z, ~ 1250 km. This is at a level where the wave
is evanescent, and is well into the region of formation of Ha (Vernazza et al., 1973).
Thus, although the trapped waves have their maximum energy at lower levels (zx~0)
where the density is higher, the vertical velocity is greatest at chromospheric levels
where is it observed.

5. Discussion

An important conclusion that emerges from our model is that the running penumbral
waves are basically a photospheric phenomenon, even though they are observed at
chromospheric levels. This is really an expected result; the phase velocity of the
penumbral waves is typical of photospheric conditions rather than chromospheric.
For example, the Alfvén velocity at Hx levels in the penumbra is far greater than the
phase velocity of the penumbral waves. In our picture, the waves are evanescent where
they are observed. That is, the observed vertical motions are a passive response to an
actively propagating wave at lower levels. We have shown that although the energy is
trapped at photospheric levels, the vertical velocity reaches its maximum value at
levels of formation of Hx, consistent with observations.

The concept of the penumbral waves as a photospheric phenomenon is also quite




412 ALAN H.NYE AND JOHN H. THOMAS

consistent with their expected source of excitation. Moore (1973) has shown that the
likely source of excitation of the penumbral waves is oscillatory convection in a sub-
photospheric layer in the umbra. The observation that the penumbral waves dis-
appear suddenly at the boundary between the white-light penumbra and the sur-
rounding photosphere also supports the photospheric nature of the waves. In the
chromosphere, the penumbral fibril structure extends outward beyond this boundary.

The basic mechanism for the vertical trapping of the penumbral waves is not sensi-
tive to the details of our penumbral model. This mechanism is based primarily on the
increase in the sound speed as we go down into the convection zone and the increase
in the Alfvén velocity as we go up into the chromosphere. These features are certain
to remain in any improved penumbral model. Observationally, the insensitivity of the
basic mechanism is confirmed by the fact that penumbral waves are seen in almost
every stable, regular sunspot (Zirin and Stein, 1972).

The character of the trapped plus modes is different at different heights. The wave is
more nearly acoustic at low levels (convection zone), but is more nearly Alfvénic at
higher levels (photosphere and low chromosphere). The effect of stratification and
gravity, while not dominant, is felt throughout the trapping region.

Although we have not attempted to calculate them, there are certainly resonant
modes in our model which arise from the constructive interference of plus modes
reflected from above and below in the trapping region. The resonant dispersion curves
would lie in the shaded region in Figure 3. However, since the penumbral waves are a
somewhat transitory phenomenon, there is no reason to associate them specifically
with such a resonant mode: it is sufficient that a wave of the proper frequency and
horizontal wavelength be vertically trapped.

Since cur penumbral model is horizontally uniform, it cannot account for any
observed horizontal (radial) variations in the penumbral waves. We can roughly
account for the radial geometry of the penumbra by noting that the energy in a verti-
cally trapped wave will decrease as 1/r, where r is radius measured from the spot
center, as the wave propagates radially outward. This accounts at least in part for the
observed decrease in wave amplitude with radius. The sudden disappearance of the
waves at the outer edge of the penumbra is associated with the more fundamental
problem of the basic existence of the sharp boundary between the white-light penum-
bra and the surrounding photosphere.

Finally, we should note that our assumption of adiabatic perturbations is invalid
over a limited range of height in the low photosphere, say the first few hundred
kilometers above z=0. Here one should account for the rapid radiative exchange. The
main effect of the radiative transfer on the plus modes is to effectively replace the
adiabatic sound speed in this limited region by something nearer to the isothermal
sound speed. The overall effect on the trapped plus modes discussed here will be quite
small, even quantitatively.
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Newcomb’s criterion for convective stability in the presence of a horizontal magnetic field is written
in a form which explicitly shows the effect of vertical variations of the magnetic field strength. It is
shown that a nonuniform horizontal magnetic field can be destabilizing as well as stabilizing.

We consider the convective instability of a compres-
sible, inviscid, perfectly conducting gas permeated by
a horizontal magnetic field B =[B(z), 0, 0] that may vary
with height z, under a uniform gravitational accelera-
tion g (in the negative z direction), assuming adiabatic
perturbations. The first complete treatment of this
problem was given by Newcomb' using the energy inte-
gral method. He showed that a necessary and sufficient
condition for stability is given by

_dp ,p%

L W

where p is mass density, p is pressure, and y is the
ratio of specific heats. In the case of instability, the
most unstable mode has the form of an interchange of
long but finite segments of magnetic field lines. The
stability criterion (1) was also derived by Yu? by con-
sidering the force balance on a displaced magnetic flux
tube.

Newcomb noted that the critical density gradient on
the right-hand side of (1) is, at least explicitly, inde-
pendent of the magnetic field, and is, in fact, that given
by the Schwarzschild criterion® in the absence of a mag-
netic field. However, in the case of a nonuniform hori-
zontal magnetic field (for which Newcomb’s analysis is
valid), the static distribution of pressure and density is
affected by the magnetic field, and thus the stability
criterion (1) depends implicitly on the magnetic field.
This point, which was overlooked by Newcomb, will be
pursued here.
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Using the equation of hydrostatic equilibrium,

d B?
(1—2-<p+§):—pg’ (2)

and the equation of state of a perfect gas, p=pRT, the
stability criterion (1) can be written in the form

dT (dT 1 d (B

)k )

dz \dz Jy pR dz \87
where (dT/dz),= - g/c,=-g(¥-1)/7R is the adiabatic
temperature gradient. The new form (3) of the stability
criterion has an advantage over the form (1) in that it
shows explicitly the effect of vertical variations of the
magnetic field, since the temperature distribution is
independent of the magnetic field. For a uniform mag-
netic field (B= const), (3) reduces to

aT = (ﬂ) >0

dz \dz/;
which is identical to the Schwarzschild criterion in the
absence of a magnetic field. [Note that usually, e.g.,
in a star, dT/dz and (dT/dz)s are both negative.] Thus,
a uniform horizontal magnetic field has no effect on the
condition for the onset of convective instability, * al-
though, as Newcomb? also showed, it does have an ef-
fect on the growth rates of unstable modes.

If, however, the magnetic field is nonuniform, then
(3) shows that the field can be stabilizing (in the case
dB/dz >0) or destabilizing (iB/dz <0). A field that in-
creases with height (¢B/dz >0) can stabilize the atmo-
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sphere in the presence of a superadiabatic temperature
gradient. When the field decreases with height (¢B/dz
<0), the critical temperature gradient is reduced be-
low the adiabatic gradient.

As an illustration of the destabilizing effect for d B/
dz <0, consider the case of an isothermal atmosphere,
which is convectively stable in the absence of a mag-
netic field. The stability criterion (3) reduces to

- aa o) <= o{32) (15Y)

If the magnetic pressure decreases more rapidly with
height than the critical rate

[EG)L--=(54).

the atmosphere will be convectively unstable. For this
critical magnetic field gradient, the corresponding
pressure gradient is found from (2) to be

]

(4)

(5)

. (6)

Thus, in the state of marginal stability in an isothermal
atmosphere, the gradient of gas pressure balances the
fraction 1/y of the gravitational force, while the grad-
ient of magnetic pressure balances the remaining frac-
tion (y = 1)/y of the gravitational force.

A special case of interest is that of an isothermal at-
mosphere in which the field decreases with height in
just the manner that causes the Alfvén speed v, = (B%/
4mp)*/2 to remain constant. In this case, (4) can be
written as

491
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2
v y =1
<
i 2< y ) ;
where ¢ = (YRT)"? is the adiabatic sound speed. This
stability criterion was obtained for this special case by
Yu® from a normal mode analysis. Parker® has studied

this case, including the effect of cosmic-ray pressure,
in connection with the gaseous disk of the galaxy.

The destabilizing effect of a nonuniform magnetic
field with dB/dz <0 is similar to the phenomenon of
“magnetic buoyancy” analyzed by Parker” and by Weiss.?
Magnetic buoyancy is attributed to an isolated tube of
magnetic flux in thermal equilibrium with its nonmag-
netic surroundings. The instability discussed here is
due to the buoyancy of an arbitrary tube of flux within
a smoothly varying magnetic field.
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ABSTRACT

The linearized theory of magneto-atmospheric waves (involving
the combined restoring forces due to buoyancy, compressibility,
and magnetic field) is developed for the case of a horizontal
magnetic field. A general propagation equation is derived for
adiabatic perturbations with arbitrary vertical distributions of

the sound speed c, Alfvén velocity v and local density scale

A’
height H. An exact analytical solution to the propagation
equation is obtained for the case of an isothermal atmosphere
permeated by a uniform horizontal magnetic field, without making
the usual short-wavelength assumption. This solution is applied
to an idealized model of the low-corona-chromosphere transition
region for comparison with observations of flare-induced coronal
waves. The results show that disturbances may propagate horizon-
tally in the low corona in a wave guide formed by the sudden
density increase into the chromosphere below and by the rapidly
increasing Alfvén velocity with height in the corona. The group

velocity of the guided wave modes is nearly independent of wave-

length, so that a disturbance propagates as a compact wave packet.
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I. INTRODUCTION

The theory of waves in a compressible, stratified,
electrically-conducting atmosphere permeated by a magnetic
field is of considerable importance in astrophysics, especially
in solar physics where there is a wealth of detailed observations
of such waves in the solar atmosphere. Following Yu (1965), we
shall refer to waves which involve compressibility, buoyancy,

and magnetic forces as magneto-atmospheric waves. Among the

many solar phenomena that are seemingly attributable to magneto-
atmospheric waves are the heating of the corona and of chromo-
spheric plages, the five-minute oscillations in active regions,
oscillations in sunspot umbrae and penumbrae, and flare-induced
coronal disturbances.

The theory of magneto-atmospheric waves is complicated by the
anisotropic nature of the medium; the gravitational field and
the magnetic field each introduce preferred directions. Addition-
ally, the disturbance is subjected to the combined restoring
forces due to compressibility, buoyancy, and the magnetic field,
so that pure wave modes (i.e., acoustic, Alfvén, and gravity)
exist only as special cases. 1In general, magneto-atmospheric
waves involve the effects of all three restoring forces. The
problem is compounded by the fact that the basic parameters
describing wave propagation in the solar atmosphere (the sound

speed ¢, the Alfvén velocity v and the local density scale height

A’

H) are, in general, functions of height, and therefore the




e

disturbance cannot be represented by plane waves propagating
in the atmosphere.

Previously, the problem of magneto-atmospheric waves has
been studied by either of two basic approaches, each yielding
a dispersion relation based on constant values of the atmospheric
parameters. The first approach has been to assume that the
vertical extent of the disturbance is much less than the smallest
scale height for variation of the atmospheric parameters. The
parameters can then be taken as constant locally. McLellan and
Winterberg (1968) studied an isothermal atmosphere permeated by
a uniform magnetic field with arbitrary orientation. Then,
assuming that the Alfvén velocity is constant locally (although
it actually increases exponentially with height), they derived
a local dispersion relation that is valid for short wavelengths
(short compared to the density scale height). This local dis-
persion relation has been studied by several authors (Bel and
Mein 1971; Michalitsanos 1973; Nakagawa, Priest, and Wellck
1973) to determine the effects of different propagation direc-
tions and magnetic field orientations.

The second basic approach has been to investigate an iso-
thermal atmosphere permeated by a horizontal magnetic field that
decreases exponentially with height such that the Alfvén velocity
is constant, as are the sound speed and the density scale height.
Yu (1965) derived the dispersion relation which in this case is
valid for all wavelengths. He evaluated the three modes of

propagation for various angles between the wave propagation vector
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and the magnetic field. Chen and Lykoudis (1972) used the
dispersion relation of Yu to study the five-minute oscilla-
tions in plage regions. Nye and Thomas (1974a) used Yu's
dispersion relation in connection with a multi-layer model
for running penumbral waves.

We consider only plane parallel atmospheres, with no
horizontal variation, in order to permit Fourier decomposition
in the horizontal directions as well as time. With variations
in the z-direction only, the governing partial differential
equations reduce to ordinary differential equations. There
are only two magnetic field configurations consistent with
static equilibrium and no horizontal variation. They are
B = constant and B = (Bx(z),By(z),O). We shall restrict our
study to the case of a unidirectional horizontal magnetic field
that may vary with height. We shall not follow either of the
two basic approaches discussed above, however, due to the
inherent limitations of each of them for solar applications.
The length scale for magnetic field changes in the solar atmo-
sphere is generally much greater than the density scale height,
so that the assumption of constant Alfvén velocity is not
justified. On the other hand, the length scale of observed
disturbances in the solar atmosphere is not generally small com-
pared to the density scale height. This is especially true in
the photosphere where the density scale height may be smaller
than 100 km, and hence smaller than the limit of observational

resolution.
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In section II we derive a general propagation equation
for an arbitrary direction of propagation and arbitrary
vertical variations of the atmospheric parameters. For the
case of an isothermal atmosphere permeated by a uniform hori-
zontal magnetic field, the Alfvén velocity increases exponen-
tially with height. 1In section III we obtain an exact general
solution of the propagation equation in this case. We compute
eigenmodes for the case of a rigid lower boundary in section 1V,
and apply this to a specific solar wave phenomenon, the flare-
induced coronal waves, in section V.

The analytical treatment in sections II and III also forms

the basis of a following paper in which we deal with running

; penumbral waves.
II. BASIC EQUATIONS

The atmosphere is assumed to be a compressible, inviscid,
perfectly conducting gas under a uniform acceleration of
gravity g (=0.274 km sec~?) in the negative z-direction. The
undisturbed magnetic field is taken in the x-direction and may
5 vary with height z; i.e., By = (By(2),0,0). The undisturbed
7 pressure, density, and temperature may all be functions of

height z, and are denoted by py(z), po(2z), and T,(2z), respectively.

We shall see that wave propagation in the basic atmosphere may be
completely characterized by the vertical variation of the sound

speed c(z), the Alfvén velocity vA(z), and the local density
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scale height H(z), defined by

L (1)

o)
i
o
=
o)
o
o
1
©
o
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The unperturbed atmosphere is taken to be in static
equilibrium:

e e By (2)
dz Po 8T Po9 -

o]

If the magnetic field is a function of height z, then it has a
role in the basic equilibrium of the atmosphere. We consider

only stable atmospheres, which requires that

B 2
dz TET)S .= 5%§ g% (5% )

where (dTo/dz)S is the adiabatic temperature gradient and R is
the gas constant (see Thomas and Nye (1975) for a recent
discussion).

Consider small adiabatic perturbations of the equilibrium
atmosphere, letting p, p, u, and B denote the perturbations in
pressure, density, velocity, and magnetic field, respectively.
Then, the basic linearized equations of continuity, momentum,

energy, and induction are

S+ vloow) =0, (3)
du

Doﬁ + Vp-pg-%ﬁ}(Vxl}_o)xg«i- (ng)xgoz = 0, (4)

3 )

‘% + u-Vp, = Cz[-é% + usVoel (5)




————

oD

- Vx(uxB,) = 0 . (6)

After taking the time derivative of the momentum equation
(4), we may eliminate the perturbation quantities p, p, and B

by using equations (3), (5), and (6). This leaves a single

vector equation for the velocity perturbation u = (u,v,w):
e o 1 dB,* 2 n
Po 3¢z * V‘Dow[g'*g;B? _EE—] — OoV‘Es it

5 :(E-V)po-fpov-g{g = f?}(ngg)x[Vx(gxgo)] =
(7)

- Box (Vx[Vx(uxBo)1) | = 0 .

Next, we assume that the perturbation velocity has the form

= 4 exp i(k*r-wt), with 8@ = 4(z) = (a(z),v(z),w(z)) and

e

ker = k. x + kyy. Then, using the definition of vAz, the three

components of the momentum equation (7) become

3%y BT - a2 A Loglle A o
(we=-c kx Ju 5. kxk v 1kx(g c dz)w QR (8)

b

g A 22y, Qg2 2 2 g o
o kxkyu + [we=-c ky Va (kx +ky )1v 1ky[g
- fotre. 1806 =
(c+v, x5V o (9)
and
e - 28 |a d o2 oY -
1kxldz H N dz 0] 1kyldz(c il )
(c?2+v,?) g
% A 2 2y 4 ls 2 2,4%w
T + g + (¢ ¥y )dziv + (c t v )EET +
(c2+v,?)
| 8 .8 T o A " |dw ¥ o B 2D e
< |dz(c '*VA ) T |3z + (w Va kx Yw 0 . (10)




These are the linearized perturbation equations. They give
important information about particle motions for various
modes of propagation in the atmosphere.

The horizontal components of the perturbation velocity
can be eliminated from the system of equations (8) - (10) to

yield a single equation for the vertical velocity w. The

resulting equation is

dw dw el
Tzt A(z) 5= " B(z) w =0 , (11) ‘
T where the coefficients A(z) and B(z) are given by
= 1 w' 2 2y 2 2 de? 1. 4
Afa) = = gt pelatev, T 8 S T *
2. 2y 2 2 2, 2 w! dvAz
+ (w°-c kX ) (w -VA kx )(l+—E—)]E- (12)
and
- Y6 202 2 o2 2127, b AT R 20
B(z) = B'w [(c +vA)(kx+ky)+vAkx]w +[vAkx(kX+ky)(2c +vA)

2
s 2 412 _c 9 521.27,.2 212 (12,412 222
g(kx+ky)(g TT) + 2v ky]w vAkx(kx+ky)[c VAkx

H A
c? [ PO S TO S dc? w2 dV;)
e g(g ""_H—)] b E(UJ "VAkX) w (kx+ky)—52— 2 -ET'kyg—a—z—‘ ~ (13)
Here, D and E are given by
= 20 21 N2 pa2 R
D (w=vy kx)[w (c +Vy )-c Va kx ] (14)
and
o oains 2 2 B poid BN By Oy 12
E =0 (kx +ky ) [w® (c +Va )-c Va kx } (15)
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Equation (11) is a general equation for the vertical component
of velocity for a perturbation propagating in an arbitrary
direction, in an atmosphere with a horizontal magnetic field
and arbitrary vertical distributions of c¢?, vAz, and H. This

propagation equation has been given previously (Nye and Thomas

1974a) in the case ky = 0.

III. ISOTHERMAL ATMOSPHERE WITH A UNIFORM

HORIZONTAL MAGNETIC FIELD

Now consider the case where the undisturbed temperature
and magnetic field are constant with height. Since the magnetic
field is uniform, it has no effect on the hydrostatic equilibrium
of the atmosphere, and the equilibrium pressure and density both

decrease exponentially with height. The sound speed and the

density scale height are both constant, with values determined
by the temperature of the atmosphere. The Alfvén velocity
increases exponentially with height due to the decreasing
density. The sound speed, density scale height, density, and

Alfvén velocity are given by

c = (yRTo)% = const. , (16)
R

H = —gl = @gonst. (17)

po(z) = poe /B, (18)

and
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vA(z) = Ver/ZH . (19)

where py and v, are the values of the undisturbed density and
Alfvén velocity at z = 0.

The nondimensional parameter B2 = vi/c? is introduced as
a measure of the relative importance of the restoring forces
due to the magnetic field and to compressibility at the point
z = 0. For values of B2 < 1, there is a region of the atmosphere
above z = 0 where compressibility has more importance as a

restoring force than does the magnetic force, but in any case

the magnetic field always becomes dominant as z becomes large.
In the remainder of this paper we shall consider only waves

whose horizontal component of propagation is parallel to the

r magnetic field (ky = 0). Using (16) - (19), we may write (l1l) as
2,2 2_ 2y 2y2,2/Hd%0 _ clw? dw
[cw ™+ (w®-c ki) vie V5T = ¥
2_~21.2 2_ 2 BBy a ,_Ei Sgfs
+ [i(as—¢ kx)(w vye kx) g (g H)kx]w g (20)

We define the nondimensional frequency @ and the non-dimensional

horizontal wavenumber K by

Hw

& = = KOS Hkx (21)

.

By transforming the dependent and independent variables according i

to

2 -
weZK/H Q z/H

s ' X = grwe-ary © :
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we may put equation (20) in the dimensionless form

2
x(l-x)%;@ + [C—(A+B+l)x]%¥ - ABW = 0 , (23)
with
2 2
A+B=C=2K+ 1, AB = Q? + K + (%F})%z . (24)

Equation (23) is the standard form of the hypergeometric
differential equation.l The solutions of this equation may be
expressed in terms of hypergeometric functions, given for

|x|] < 1 by

n

F(R,BiCix) = poaer | AIRL(E4N) x (25)

- TTE 2, T (C+n)

The general solution of equation (23) may be written, for

|x] < 1, in terms of the original variables z and w(z) as

~ — 2 -~
w(z) = D,e ZK/HF(A,B;C;B (K?-Q ) e Z/H) +
(26)
zK/H B2 (K2-Q?) 2K G- -2/H
+ D,e &t F(A—C+l,B—C+1;2-C;82(KZ_Q r e

where D, and D, are arbitrary constants.

IV. EIGENMODES FOR A RIGID LOWER BOUNDARY

We now examine modes of propagation in the relatively simple

1The hypergeometric nature of the wave equation in this case was

noted by us earlier (Nye and Thomas 1974b), and also independently

by Adam (1974).
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case of an isothermal atmosphere with a uniform horizontal
magnetic field, bounded from below by a rigid wall at z = 0.

The general solution (26) is subject to boundary conditions

at z = 0 (x = 02/B%(K?-Q?)) and at z = » (x = 0).
As a condition at z = «, we require that the total energy
of the perturbation be integrable over 0 < z < «», The magnetic

energy of the perturbation is proportional to the square of

the velocity. Since

lim F(a,B;y:x) =1 , (27)
x+0

we see from (26) that we must take D, 0.

The second boundary condition is that the vertical velocity
vanish at the rigid wall, i.e., w= 0 at z = 0, i.e., at
x = Q?/B%(K?*-Q?). Provided

QZ
B2(R2=3%)

< 1 (28)

we may apply this condition directly to (26) with D, = 0 to

obtain the dispersion relation

2
F(A,B;C;Em%_—ﬂ'g—)-) =0 , (29)

If, however, (28) is not satisfied, then other representations
of the general solution (26), valid for |[x| > 1 must be used in
order to apply the boundary condition at z = 0. For

92

BT(RE=qazy 2 1 ¢ (30)
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the interval 0 < x < Q%/B%?(K?-Q?) contains the regular singular
point at x = 1, and no solution that satisfies the boundary
conditions and is also regular at x = 1 is to be expected.

For the range

QZ
BZ(KZ_QE) Lo 12 ' (31)

we may use analytic continuation to extend the general
solution (26). The analytic continuation of (26) with D, = 0,

valid for x < - 1, is given by

X

- - 2 2 2y B
#(z) = D,e zK/H:I‘E%)(}I;)(I]BzA) (8 (QQZK )| eZA/H

B2(K?-Q%) _z/H, , T(C)T(A-B)
Q2 TITETE

x F(A,1-B;1-B+A; e

2 2 2
B2 (K2-0%) _z/H,|

! : (32)

x

2 poi2 ey B
[ﬁ—i%?rﬁ—l] eZB/HF(B,l—A;l—A+B;

Thus, for the range of parameters (31), the dispersion relation
is given by
B%(k*-0?)

2 ra2op2y B
[ (B=A) [B (°-K )] F(A,1-B;1-B+A;

[T(B)]? Q2 L
2 iale2y B 2 (g2-02
+ SR (B AR ZK)) pip, 1oag1-aem K SR)) 2 g, a3

[T(A)]? Q

The dispersion relation (equation (29) or (33)) has been
evaluated for various values of the nondimensional parameter
B2. Examples are plotted in figures 1 and 2 (also see figure 4).
The curves in these figures represent well-defined eigenmodes

of wave propagation in the atmosphere. These curves represent
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trapped waves propagating horizontally in the waveguide formed
by the solid boundary below and the exponentially increasing
Alfvén velocity above.

There are several ways of interpreting the effect of 3
changing R? on the dispersion relation. First, different
values of B? can be taken to represent the same magnetic field
strength and the same density at z = 0, but different atmospheric
temperatures. A second interpretation is that different values
of B? represent the same magnetic field strength and the same
temperature, but different densities. This is equivalent to
placing the solid lower boundary at successively higher levels
in the atmosphere corresponding to larger values of B2?. At
each higher level the magnetic restoring force becomes more
important due to the decreased density, while the compressible
restoring force remains the same.

The third interpretation is to consider changes in B2 to
be due to changes in the magnetic field strength, with fixed
values of temperature and density. Since the sound speed and
the density scale height then do not change, the scales for the
frequency and horizontal wavenumber are the same in each case
and the dispersion diagrams can be compared directly. From
figures 1 and 2 it can be seen that increasing the magnetic field &
strength (increasing B?) increases the cutoff frequency. As

B2 increases, the slope of the dispersion curves, and hence the 3

group velocity, also increases.

Lowering the value of y to represent crudely the effect of
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radiative transfer has little effect on the nondimensional
dispersion diagrams. However, the frequency scaling depends
on y as w -~ (Y)%Q, while the wavenumber scaling is independent
of y. Therefore, for lower y (lower sound speed) the wave
oscillates less rapidly and the phase and group velocities are
correspondingly lower.

The vertical velocity of the disturbance (equation (26) or
(32)) can be calculated as a function of height for any point
on a dispersion curve. Figure 3 compares the lowest mode of
oscillation for the same horizontal wavenumber but different
values of R? (i.e., different magnetic field strengths), and
shows that for increasing magnetic field strength, the wave
oscillates more rapidly and is trapped at lower levels in the
atmosphere. We now discuss the eigenmodes given by the dispersion
relation (29) or (33) in relation to an observed solar

oscillation.
V. APPLICATION TO FLARE-INDUCED CORONAL WAVES

On September 20, 1963, Moreton and Ramsey (Moreton 1965)
observed a chromospheric disturbance, apparently caused by the
flash phase of a flare, propagate at a nearly constant velocity
of 750 km s"l for several hundred thousand kilometers across
the solar disk. Many other flare-induced disturbances have
been reported (Moreton 1960, Athay and Moreton 1961, Dodson and

Hedeman 1968) and the propagation velocity is usually on the order
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of 1000 km s L. Dodson and Hedeman (1968) report that the

width of the disturbance created by the proton flare of
August 28, 1966 was greater than 100,000 km.
These disturbances could not have been propagating solely

in the chromosphere, since in the chromosphere the sound speed

is only of the order of 20 km gt

only of the order of 50 km s-l. Thus a purely chromospheric

and the Alfvén velocity is

disturbance would have created a shock wave and been rapidly
dissipated. In the corona, however, both the Alfvén velocity and
the sound speed are an order of magnitude higher than in the
chromosphere due to the increased temperature and decreased
density. It has been proposed (Meyer 1968; Uchida 1968, 1970,
1974; Uchida et al. 1973) that the disturbance is a magneto-
hydrodynamic wave propagating in the low corona and that the
motion of this wave at the corona-chromosphere transition region
is what is actually observed. There is, however, no general
agreement as to the wavelength of the disturbance or even whether
the observed disturbance is a single wave or a wave packet.

Meyer (1968) studied the propagation of the magneto-acoustic
fast mode in an isothermal corona permeated by a uniform
vertical magnetic field, with a rigid lower boundary representing
the chromosphere-corona transition region. He found eigenmodes
with nearly constant horizontal group velocity. Equating the
group velocity to the observed propacation velocity, Meyer
found that for a horizontal wavelength on the order of 100,000 km,

the coronal magnetic field must be approximately 6 gauss, a




T ————

reasonable average value.

Uchida, in a series of papers (fichida 1968, 1970, 1974;
Uchida et. al. 1973), studied the propagation of short wave-
length (~5000 km) disturbances in various realistic coronal
models. Using a ray-tracing technique, he obtained horizontal
and vertical refractions in close agreement with the observed
waves,

Although the magnetic field structure of the corona is
quite complicated, the field changes fairly slowly and there ;
are probably regions of nearly uniform field with almost any |
orientation. We study the case of a uniform horizontal field
in connection with the coronal wave problem only as a means of
understanding the mechanism of wave propagation for waves of

arbitrary wavelength. Our model supplements Meyer's (1968) work

by considering the case of a uniform horizontal magnetic field,

and by including effects of gravity and stratification. As in

Meyer's model, we use the rigid lower boundary to represent

upward reflection from the chromosphere-corona transition layer.
We have evaluated our solution for a temperature of

1.6 x 10° °K and B2 = 10, which is fairly typical of the base

of the corona. These values correspond to a sound speed of

—

180 km s-l and a density scale height of approximately 71,000 km.
Figure 4 shows the dimensional dispersion relation for these
parameters. We see that the dispersion curves are nearly straight,
which means that these modes have very little dispersion and will

propagate for great distances with little change in character.
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The first three modes have been calculated for a wavelength
of 75,000 km in figure 5. The first mode has nearly zero
vertical velocity above two scale heights and is therefore
trapped in the low corona.

The phase velocity and group velocity of the first mode
have been plotted as a function of horizontal wavenumber in
figure 6. For any wavelength of 100,000 km or less, the
group velocity is nearly constant at about 610 km s-l. Since
the energy of a disturbance propagates at the group velocity,
it is not important which specific wavelength, or spectrum
of wavelengths, receives energy from the flare. The energy
at all wavelengths will propagate together as a wave packet

near the lower coronal boundary.

The present model is not proposed as a realistic model of
the solar corona, although it may be fairly accurate over
h certain regions. No attempt has been made to include the
effects of horizontal variations. The value of the model is
that a mechanism for wave propagation can be studied for
arbitrary wavelengths. These results close the gap between
the short wavelength ray-tracing theory and the long wavelength,
vertical field case. We show that the question of wavelength
is not particularly important since the group velocity of the
: trapped modes is essentially independent of wavelength. For the
relatively large value of B2 (=10), the wave modes are basically
the magneto-acoustic fast modes (studied by Meyer and by Uchida)

modified by gravity. For an inclined magnetic field, there must
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also be trapped modes of propagation involving a coupling of
the present modes and the type of mode studied by Meyer for a
vertical field. The present results, taken with those of
Meyer and the work of Uchida, present a consistent picture of
flare-induced coronal waves as guided magneto-atmospheric

waves.,
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

FIGURE CAPTIONS

Dispersion diagrams (nondimensional frequency versus
nondimensional horizontal wavenumber) for an isothermal
atmosphere with a uniform horizontal magnetic field

and a solid lower boundary, with y = 5/3, g2 = 10~ °%,
and B? = 107*. The curves represent eigenmodes and the
crosses indicate the computed points. This figure
should not be confused with a diagnostic diagram for an
atmosphere with constant parameters (e.g., Yu 1965).
Same as Fig. 1, but with g2 = 0.5.

Direct comparison of the first mode of oscillation

of the atmosphere for the same nondimensional horizontal
wavenumber (K = 0.25) but for two values of g2

(g* = 107%, g* = 10°%).

Dimensional dispersion diagram for g% = 10, y = 5/3,
and T = 1.6 x 10°°K, The curves represent eigenmodes
of the corona which are trapped by the increasing
Alfvén velocity with height.

First three modes of oscillation of the model corona
for g2 = 10, y = 5/3. The vertical velocities have
been normalized to maximum value unity.

Phase velocity vp and group velocity L of the first
mode of coronal oscillation plotted as a function of

horizontal wavenumber.
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ABSTRACT

A simple two-layer model of a sunspot penumbra is used
to study the mode of running penumbral waves. Exact solutions
of the .linearized wave equation, not limited to the small-
wavelength approximation, are employed in each layer. The

lowest "plus" eigenmode of magneto-atmospheric waves in the

model penumbra is in good agreement with observations of

running penumbral waves. The results indicate that running

penumbral waves should be observable in a photospheric spectral

i line.
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I. INTRODUCTION

In Paper I of this series (Nye and Thomas 1975) we
presented an exact analytical solution for magneto-atmospheric y
waves in the case of an isothermal atmosphere with a uniform

horizontal magnetic field. 1In the present paper we apply this

solution to a simple two-layer model penumbra in order to study
the mode of running penumbral waves.

Running penumbral waves (Zirin and Stein 1972; Giovanelli
1972, 1974; Moore and Tang 1975) are good examples of magneto-
atmospheric waves. These waves propagate radially outward

across sunspot penumbrae, with predominantly vertical motions

in Ha. The observed range of frequency and propagation speed
is fairly well established (see discussion in section IV).

Moore (1973) has concluded that the source of excitation of
the penumbral waves is overstable cenvection in the low umbra.

In an earlier paper (Nye and Thomas 1974 (NT)) we studied the

mode of propagation of penumbral waves on the basis of a piece-

wise linear model of the vertical structure of a typical suncspot
penumbra. We found the penumbral waves to be magneto-atmospheric
waves (of the "plus" type) that are vertically trapped at photo-
spheric levels. This trapping is primarily due to the increasing
sound speed with depth into the convection zone and the increasing
Alfvén velocity with height into the chromosphere.

Here we extend our earlier work by computing actual eigen-

modes of propagation for a somewhat simpler model penumbra, which
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nevertheless retains the essential features. The properties of
the lowest mode of propagation of the model penumbra turn out
to be in good agreement with observations, and give some useful

clues for further observation of running penumbral waves.

II. THE TWO-LAYER PENUMBRAL MODEL

The entire penumbral model consists of a compressible,
inviscid, perfectly-conducting, stratified perfect gas subject
to a constant acceleration of gravity g (= 0.274 km s”2) in the
negative z-direction. The upper layer is isothermal and is
permeated by a uniform horizontal magnetic field, which yields
an Alfvén velocity that increases exponentially with height due
to the decreasing density. An exact solution of the linearized
propagation equation for this case was given in Paper I.

This upper layer is a suitable model of the penumbral photo-

sphere and chromosphere, where observed penumbral magnetic fields
are very nearly horizontal (Nishi and Makita 1973) and decrease
slowly with height (Bray and Loughhead 1964). The scale height

for variation of the magnetic field is very large compared to

the density scale height, so the assumption of a uniform horizontal
magnetic field is reasonable. Our earlier calculations (NT) showed
that running penumbral waves are trapped at photospheric levels,

so that the increasing sound speed in the upper chromosphere has

little effect on the trapping. Taking the upper layer to be iso-

thermal is therefore also a reasonable assumption.




The vertical distributions of the sound speed and Alfvén
velocity for the two-layer model penumbra are shown in Figure 1.
Subscripts 1 and 2 denote quantities in the upper and lower
layers, respectively, and the subscript 0 refers to quantities L
evaluated at z = 0. The sound speed, density scale height, and

Alfvén velocity in the upper layer are given by

cf = y,RT, = const. , (1)

2
SR T const (2)

e o 7
Y, 9
and
2 e 2 Z/Hl

VA(Z) = e . (E31)

The lower layer of the penumbral model (layer 2, figure 1)
is adiabatic with no magnetic field. The temperature decreases
with height (increases with depth) at the adiabatic lapse rate,

(dT/dz)S = —g/cp, and thus this layer is neutrally stable. The

actual temperature distribution in the convection zone below a
; penumbra is probably very nearly adiabatic, except for a thin
superadiabatic layer just beneath the photosphere that we

neglect here. There is no magnetic field in this layer since
we assume that the penumbral magnetic field lies over the con-

vection zone. The sound speed squared and local density scale .

height each increase linearly with depth in the lower layer,

their functional forms being
2 2
€,(2) = cyp= gly,~1l)2 (4)

and
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Hof2) = Hap = Iy, <L)z . (5)

The corresponding density distribution is

1/(y,-1)

p,(2) = p,, (1~ (y,~1)z/H,,] . (6)

At the interface between the two layers (z=0), we require
the undisturbed density to be continuous to avoid introducing
interfacial gravity waves and wave reflections; therefore,

Pro = P,y In the unperturbed penumbra, there must be pressure
equilibrium at the interface; that is, the gas pressure in the
lower layer at z=0 must equal the sum of the gas pressure and
the magnetic pressure in the upper layer at z=0. Therefore,
the gas pressure is greater in layer 2 than in layer 1, and
since the density is continuous across the interface, the tem-

perature is greater in layer 2. This may be expressed in terms

of the sound speeds and the Alfvén velocity at z=0 as

(o]

N}
]
|-<

~

2 Yo 2
¢+ L2 vl (7)

N
(=]
<
e

We now turn to the problem of computing eigenmodes of

magneto-atmospheric waves in this penumbral model.

IIT. ANALYSIS

Consider first the behavior of small adiabatic perturbations

in the lower layer (layer 2), an adiabatic atmosphere without

magnetic field. Leibacher (1971) solved this problem in his study
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of oscillations of the quiet photosphere. Here we take a
slightly different approach than his, using other transformations
which yield a different form of the propagation equation. For
vanishing magnetic field (go = B = 0), the vector equation for
the perturbation velocity (equation (7), Paper I) becomes

3%u

—t% = C,V0 + (y,~1)eg + V(u,-9) , (8)

where ¢ = V-gz.
We assume that the perturbation velocity has the form

u, = gz(z)el(kxx_mt)

, with propagation in the x-direction (ky==0).
This implies that v, = 0 and 4, = 4,(z) = (4,(2),0,w,(2)).

All other perturbation quantities are represented in a similar
manner, with a caret denoting the z-dependent amplitude in

each case. From the two components of equation (8) and the
definition of ¢, we obtain the following relation:

gly,-c2k2/wlf - c2 32

W, z) = [wZ-g7k2Z/w?] . (9)

The pressure perturbation can also be written in terms of $,

using the continuity and energy relations (see Paper I):

G ) 217 & é§

By W l [w?=g?k2/w?] ’ : &=

Upon substitution of equation (9) into the z-component of

equation (8), we obtain the following second-order differential

equation for @:




az 1 dci _ qY,|ds , |w? 9%k; ke asl.
—_— - puuselhs <4 - - =
Z2 c: dz c? |dz i c7 ke * "cf(Y2 k) % wic: dz ¢ @ »
{11)
The nondimensional frequency, horizontal wavenumber, and
depth, based on the values of sound speed and density scale
height in layer 2 at z=0, are defined by
q, = Haouw K, = H, k. and o= e, (12)
2 T g ’ 20 = EEongint e K H,p

By transforming the independent and dependent variables according

to
f Y=Wil-<_—21—,--21<25, v=e"2% (13)
t equation (11) assumes the form
yg;—‘i’+ (b-v) 3¢ - ay = 0, (14)
where
a- Ll o f L p - Zush (15)

Equation (14) is the standard form of Kummer's equation (see
Abramowitz and Stegun 1964). The solutions of this eguation

are given in terms of Kummer's functions,

’ _I(b) 7 T(a+n) ¥Y"
M(a,b;Y) = T(a) z m " - (16)
n=0
The general solution of equation (14) is
y(Y) = D,M(a,b;Y) + D,U(a,b;Y) , 175
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where D, and D, are arbitrary constants and U(a,b;Y¥Y) can be

written in terms of Kummer's functions. To insure finite total
perturbation energy, we must require that the vertical velocity

of the perturbation vanish as z » -« or as Y +- +». This in

turn requires that D, = 0. The solution for & as a function .

of z in the lower layer is then

2K ~ f

] K, ~+ (M(a,b;—"%— - 2K,2z) :
A o 7 SEee Lo S Y .=1) |

‘ ®(2) =D, gthmp © (Y73 el T(I+a-b) T (b) |
’ 1P M(1+a-b,2-bi2N2_ - 2K,3) | !
oS e Taaees (vp-1) (18) “

T?Z“l) 2 I'(a)T (2-b) ‘ ) |

The vertical velocity and pressure perturbation are given in i
terms of ¢ by equations (9) and (10).

The form of the solution in the upper layer has been given
in Paper I, and we shall not repeat the analysis here. The
general form for the vertical velocity in the upper layer that
gives finite total perturbation energy is given in terms of

hypergeometric functions by either

- il g
5 2% H,y el 1 -z/H,
w,(2) = D,e F(A,B;C; BZ(K2-07) e ) (19) i
for s
el z/H
e | ¢ s

or else by ;
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e—zKI/H1 4

w (z) =D

1 1

r(c)r(s-a)[g2(22-k>)* za/u,
[T(B) ]2 Q7 &

2 2 0% Te 2 2 .2 B :
Pih bt pn B (KQ]%Q,) 62/H1)+F([CI?(FA()P328)[B (legxl)] JZB/H,
g2 (K?-02) z/H
F(B,1-A;1-A+B; - e 1)% (21)
1
for
Qf z/H
1
m' > e A (22)
Here
AR+B=E=2K +1 , (23)
2
=1 K
B = 2° + K, + (%%—1)5? : (24)
B =wijcl . (25)

and @, and K, are nondimensional frequency and wavenumber defined
as in (12), except scaling with c, and H .
The pressure perturbation in the upper layer consists of the

sum of the gas pressure perturbation and the magnetic pressure

perturbation. The gas pressure perturbation can be expressed

in terms of the vertical velocity and its derivative as

dw, _ ~
p. = -ip clw [dz £l . (26)
1 = (w2-c2k2)

The magnetic pressure perturbation ﬁm is found from the
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linearization of

where P is the unperturbed magnetic pressure. The components
of the perturbed magnetic field are determined by the linearized

induction equation (equation (4) of Paper I). We find

2
Vs ~
a0 . AN dw,
Pm = 7 Ty @z (27)
The total perturbed pressure ﬁT in layer 1 is expressed in
i}
terms of the density and the Alfvén velocity as
~ o LA 2ENE o S S Lo dw R 2 292
Py —Bl{[(c1+vA)w C VK g —wigw,} /(wi-cik ) . (28)

IV. EIGENMODES AND RUNNING PENUMBRAL WAVES

We now have expressions for the vertical velocity and the
pressure perturbation in each layer of the penumbral model, such
that the total verturbation energy is finite. The remaining
conditions are the matching of the vertical velocity and the
perturbed pressure at the interface z = 0.

The scaling of frequency and wavenumber was done separately
for each layer in order to simplify the propagation equation as
much as possible in each case. In matching across the interface,
we need the following relations between parameters in the two
layers:

B2y

Hyo = v, (1 + —1H, (29)




By 2
Yg(l + -—2-4') K2

]

K2

and equation (7).
Continuity of the vertical velocity across z = 0 requires,

after normalization, that
w, (0) = w,(0)'=1 . (32)

This condition fixes the values of the coefficients D, in equation
(19) or (21) and D, in equation (18). The remaining condition,

the continuity of the perturbed pressure, requires that we

g equate (10) and (28). This then leads to the nondimensional
condition
dw G% 2 ds
2 2_p2p2 LY ik
‘ [(l+E )Qi R KI]d""‘il'LYl w, (O) ) : —1; ‘ QQY2¢(0) +d—§;|0 (33)
l (QZ-K?) g Y| @R ‘ !

where ¢ = $H,,. Equation (33) is only satisfied by particular
values of frequency and wavenumber, and gives the dispersion
relation for eigenmodes of oscillation in the penumbral model.

In order to evaluate the dispersion relation (33), the free

parameters g?, Y, and y, must be specified, which then effectively
determines the properties of the model. Although it is possible

to evaluate (33) for different values of y in each layer (for

T Y . T

example, a lower value of ¥y could be taken to represent radiative
transfer in the upper layer), we chose the usual value of 5/3 for
both layers. The dispersion relation (33) was solved numerically

by inserting values of K, and then computing and comparing the two
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sides of (33) for small increments in Q-

Figure 2 shows the first several eigenmodes of the two-
layer penumbral model for g2 = 0.5 and Yq =¥y B 5/3. The
value of B? was chosen to represent a typical penumbra and is
slightly less than the value of B? at z = 0 in our earlier
penumbral model (NT). Here we have classified the eigenmodes
as "plus" or "minus" modes, following the terminology used in
the case of an atmosphere with constant sound speed, density
scale height, and Alfvén velocity (see MclLellan and Winterberg
1968 and NT). The plus modes all lie above the upper dashed line

Q@ = K in figure 2, which corresponds to w = c,k_, (the Lamb mode).

X
The minus mode (there is only one in this case) lies below the

lower dashed line @ = BK which corresponds to w = v _k There

07X "’
are no eigenmodes in the region between the dashed lines. This
classification of plus or minus modes refers here to the character
of the eigenmode in the upper layer; in the lower layer, all of
the modes have the character of acoustic waves (no magnetic

field and no buoyancy).

Observational data on penumbral waves are included in figure

2 for comparison. The most commonly reported observational
guantities are the period and the horizontal phase velocity,
although they are not always measured simultaneously. Giovanelli
(1974) reports a typical phase velocity of running penumbral waves
of 15 km s~! and typical periods in the range of 180-240 s, He

1

did report phase velocities of up to 21 km s~ ', however, and gave

specific periods and wavelengths for four sunspots (denoted by
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crosses in figure 2). The data of Beckers and Schultz (1972)
appear to indicate a penumbral oscillation period of 255 s.
Moore and Tang (1975) observed penumbral waves with period
27010 s in a single sunspot. 2Zirin and Stein (1972) state
that the periods of penumbral waves in twenty sunspots were
almost all between 240 s and 300 s, and the measured horizontal

phase velocity of 9.4 km s™!

in one spot was more or less the
same in other spots even when the period varied.

The quadrangle in figure 2 represents the range of observa-
tions: periods from 180 s to 300 s, and phase velocities from
9.4 km s~! to 21 km s~!, with a dashed line at 15 km s~! to
indicate the value that Giovanelli considers typical. The
first plus mode of the penumbral model passes through this
quadrangle. Although the particular eigenmode of oscillation of
the penumbra is determined by the excitation, and little is known
about the excitation, the present results indicate that it is the
first plus eigenmode that is being excited. This agrees with our
earlier conclusions (NT).

The value B2 = 0.5 used in figure 2 was chosen to represent
a typical penumbra. In figure 3 the effect of changes in B2 on

the first plus mode is shown for a range of B2 of two orders of

magnitude (0.05, 0.5, 5.0). This constitutes a reasonable set

of limits on B%? for penumbral conditions, and is obtained by
looking at the normal variation of B (factor of 4), p (factor of
4), and c? (factor of 1.5) expected in different penumbrae.

We see that for any reasonable value of B2?, the penumbral model
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has a first plus mode within the range of observations.

The vertical distributions of velocity and kinetic energy
of the first plus mode (for B2 = 0.5) are shown in figure 4- |
for K, = 0.1995 and @, = 0.3628, corresponding to a horizontal
] wavelength A = 3,000 km and period T = 250 s for cf = 43.5 km?*g~?,
Here the nondimensional height is scaled everywhere by the

density scale height in the upper layer, H The velocity

ye
distribution is fairly symmetric with the maximum amplitude
occurring slightly above z = 0 in the penumbral photosphere.

The kinetic energy, on the other hand, is almost entirely trapped
in the lower layer (convection zone) with maximum energy just
below the interface. The velocity amplitude decays slowly with
height with a value of more than 25% of the maximum amplitude

at a distance of eight scale heights above the level of that
maximum,

There is a discrepancy between the height of maximum g

velocity predicted here (z ~ 100 km) and that predicted in our
earlier paper (NT, z ~ 1000 km). Here the Alfvén velocity
increases exponentially with height above the photosphere,
whereas in NT it increased linearly. Thus, the downward refrac-
tion of waves is much stronger in the present model. The actual
situation is probably somewhere between these two cases. 1In
either case, the wave energy lies mostly below the height of
maximum vertical velocity, in the convection zone and low photo-

sphere.
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V. CONCLUSIONS

The present results, taken together with our earlier work
(NT), indicate that running penumbral waves shculd be identified
with the lowest plus mode of trapped magneto-atmospheric waves
in the penumbra. The vertical trapping is primarily due to the
increasing Alfvén velocity up into the chromosphere and the in-
creasing sound speed down into the convection zone. Most of 5
the energy of the penumbral waves lies in the convection zone
and low photosphere, at the same level as the expected source
of excitation (umbral oscillatory convection). The maximum wave
amplitude occurs somewhat higher.

The results also indicate that penumbral waves should be

observable in a photospheric spectral line (see figure 4) as

well as in Hoa. There is some indication of this in the obser-
vation of Beckers and Schultz (1972). Their data show a 255 s
period oscillation in the penumbra of one sunspot observed in

a photospheric line. They present contours of vertical velocity
as a function of horizontal position and time (their figure 1)
in which one may note horizontal propagation outward across

the penumbra at about the right phase speed. We plan further

observations in a search for penumbral waves in the photosphere.
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FIGURE CAPTIONS

Distribution of ¢’ and v’ with height z in the two-

2
A
layer penumbral model. The upper layer (1) is iso-
thermal with a uniform horizontal magnetic field.

The lower layer (2) has an adiabatic temperature
gradient and no magnetic field.

The first five plus eigenmodes and the only minus
eigenmode of the two-layer penumbral model for 82 = 0.
¥; = ¥, = 5/3. The quadrangle represents the range of
observational data (see text). The crosses correspond
to particular observations (Giovanelli 1974).

The first plus eigenmode evaluated for extreme values
of B%? for sunspot penumbrae (see text): g2 = 5.0,

max

B2 . = 0.05. The quadrangle represents the range of
min

observational data. The crosses correspond to

particular observations (Giovanelli 1974).

The distribution of vertical velocity and kinetic energy

of the first plus eigenmode with nondimensional height

z/H The velocity and energy are each normalized to

L

value unity at the interface z/H, = 0,
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